Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

نویسندگان

  • Abdelaziz Boulesbaa
  • Eric Borguet
چکیده

The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer.

Time and frequency domain sum-frequency generation (SFG) were combined to study the dynamics and structure of self-assembled monolayers (SAMs) on a fused silica surface. SFG-free induction decay (SFG-FID) of octadecylsilane SAM in the CH stretching region shows a relatively long time scale oscillation that reveals that six vibrational modes are involved in the response of the system. Five of th...

متن کامل

Orientational motions of vibrational chromophores in molecules at the air/water interface with time-resolved sum frequency generation.

The first time-resolved experiments in which interfacial molecules are pumped to excited electronic states and probed by vibrational sum frequency generation (SFG) are reported. This method was used to measure the out-of-plane rotation dynamics, i.e. time dependent changes in the polar angle, of a vibrational chromophore of an interfacial molecule. The chromophore is the carbonyl group, the rot...

متن کامل

Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ.

In this work, we demonstrate the feasibility to collect off-electronic resonance chiral sum frequency generation (SFG) vibrational spectra from interfacial proteins and peptides at the solid/liquid interface in situ. It is difficult to directly detect a chiral SFG vibrational spectrum from interfacial fibrinogen molecules. By adopting an interference enhancement method, such a chiral SFG vibrat...

متن کامل

Molecular Level Studies of Polymer Behaviors at the Water Interface Using Sum Frequency Generation Vibrational Spectroscopy

Industrial plastics, biomedical polymers and numerous other polymeric systems are contacted with water for everyday functions and after disposal. Probing the interfacial molecular interactions between widely used polymers and water yields valuable information that can be extrapolated to macroscopic polymer/water interfacial behaviors so scientists can better understand polymer bio-compatibility...

متن کامل

Capturing the Ultrafast Vibrational Decoherence of Hydrogen Bonding in Interfacial Water.

Vibrational sum-frequency generation (vSFG) measurements in the frequency and time domains reveal that the interfacial hydrogen bonded OH stretch at the water/calcium fluoride interface is composed of two populations oriented oppositely. The time-resolved vSFG free-induction decay suggested that, whereas the strongly hydrogen bonded OH vibrational stretches, centered near 3140 ± 11 cm-1, are or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2014